MTPS Maths Progression Grids - with Reasoning and Problem Solving

	Number - Place Value: COUNTING					
EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Counts reliably with numbers from 1 to 20, (ELG)	count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number			count backwards through zero to include negative numbers	interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero	use negative numbers in context, and calculate intervals across zero
Estimates a number of objects and checks quantities by counting up to 20 (ELG Exc)	count, read and write numbers to 100 in numerals; count in multiples of twos, fives and tens	count in steps of 2, 3 , and 5 from 0 , and in tens from any number, forward or backward	count from 0 in multiples of 4, 8, 50 and 100;	count in multiples of $6,7,9,25$ and 1000	count forwards or backwards in steps of powers of 10 for any given number up to 1000000	
says which number is one more or one less than a given number (ELG)	given a number, identify one more and one less		find 10 or 100 more or less than a given number	find 1000 more or less than a given number		
	Spot the mistake: 5,6,8,9 What is wrong with this sequence of numbers? True or False? I start at 2 and count in twos. I will say 9 What comes next? $\begin{aligned} & 10+1=11 \\ & 11+1=12 \\ & 12+1=13 \end{aligned}$	Spot the mistake: 45,40,35,25 What is wrong with this sequence of numbers? True or False? I start at 3 and count in threes. I will say 13? What comes next? $\begin{aligned} & 41+5=46 \\ & 46+5=51 \\ & 51+5=56 \end{aligned}$	Spot the mistake: 50,100,115,200 What is wrong with this sequence of numbers? True or False? 38 is a multiple of 8 ? What comes next? $\begin{aligned} & 936-10=926 \\ & 926-10=916 \\ & 916-10=906 \\ & \ldots \ldots . . \end{aligned}$	Spot the mistake: 950, 975,1000,1250 What is wrong with this sequence of numbers? True or False? 324 is a multiple of 9 ? What comes next? $\begin{aligned} & 6706+1000=7706 \\ & 7706+1000=8706 \\ & 8706+1000=9706 \\ & \ldots \ldots \end{aligned}$	Spot the mistake: $177000,187000,197000,217000$ What is wrong with this sequence of numbers? True or False? When I count in 10's I will say the number 10100? What comes next? $\begin{aligned} & 646000-10000=636000 \\ & 636000-10000=626000 \\ & 626000-10000=616000 \\ & \ldots \ldots . . \end{aligned}$	Spot the mistake: $-80,-40,10,50$ What is wrong with this sequence of numbers? True or False? When I count backwards in 50s from 10 I will say -200 True or False? The temperature is - 3. It gets 2 degrees

MTPS Maths Progression Grids - with Reasoning and Problem Solving

		...				warmer. The new temperature is -5?
	COMPARING NUMBERS					
places them (numbers 1-20) in order (ELG)	use the language of: equal to, more than, less than (fewer), most, least	compare and order numbers from 0 up to 100 ; use <, > and = signs	compare and order numbers up to 1000	order and compare numbers beyond 1000 compare numbers with the same number of decimal places up to two decimal places (copied from Fractions)	read, write, order and compare numbers to at least 1000000 and determine the value of each digit (appears also in Reading and Writing Numbers)	read, write, order and compare numbers up to 10000000 and determine the value of each digit (appears also in Reading and Writing Numbers)
	Do, then explain Look at the objects. (in a collection). Are there more of one type than another? How can you find out?	Do, then explain 371373333 If you wrote these numbers in order starting with the smallest, which number would be third? Explain how you ordered the numbers.	Do, then explain 835535538388 508 If you wrote these numbers in order starting with the smallest, which number would be third? Explain how you ordered the numbers.	Do, then explain 5035505353505530 5503 If you wrote these numbers in order starting with the largest, which number would be third? Explain how you ordered the numbers.	Do, then explain 747014774014 747017 774077744444 If you wrote these numbers in order starting with the smallest, which number would be third? Explain how you ordered the numbers.	Do, then explain Find out the populations in five countries. Order the populations starting with the largest. Explain how you ordered the countries and their populations.
	IDENTIFYING, REPRESENTING AND ESTIMATING NUMBERS					
	identify and represent numbers using objects and pictorial representations	identify, represent and estimate numbers using different representations,	identify, represent and estimate numbers using different representations	identify, represent and estimate numbers using different representations		

MTPS Maths Progression Grids - with Reasoning and Problem Solving

MTPS Maths Progression Grids - with Reasoning and Problem Solving

		Do, then explain Show the value of the digit 2 in these numbers? $\begin{array}{\|lll} 32 & 27 & 92 \end{array}$ Explain how you know. Make up an example Create numbers where the units digit is one less than the tens digit. What is the largest/smallest number?	Do, then explain Show the 3 value of the digit 3 in these numbers? $341 \quad 503 \quad 937$ Explain how you know. Make up an example Create numbers where the digit sum is three. Eg 120, 300, 210 What is the largest/smallest number?	Do, then explain Show the value of the digit 4 in these numbers? 304143215497 Explain how you know. Make up an example Create four digit numbers where the digit sum is four and the tens digit is one. Eg 1210, 2110, 3010 What is the largest/smallest number?	Do, then explain Show the value of the digit 5 in these numbers? 350114567432 985376 Explain how you know. Make up an example Give further examples Create six digit numbers where the digit sum is five and the thousands digit is two. Eg 30020002102000 What is the largest/smallest number?	Do, then explain Show the value of the digit 6 in these numbers? 678755595467754 Expalin how you know. Make up an example Create seven digit numbers where the digit sum is six and the tens of thousands digit is two. Eg 4020000 What is the largest/smallest number?
	ROUNDING					
				round any number to the nearest 10,100 or 1000	round any number up to 1000000 to the nearest 10, 100, 1000 , 10000 and 100000	round any whole number to a required degree of accuracy
				round decimals with one decimal place to the nearest whole number (copied from Fractions)	round decimals with two decimal places to the nearest whole number and to one decimal place (copied from Fractions)	solve problems which require answers to be rounded to specified degrees of accuracy (copied from Fractions)
				Possible answers A number rounded to the nearest ten is 540 . What is the smallest possible	Possible answers A number rounded to the nearest thousand is 76000 What is the largest	Possible answers Two numbers each with two decimal places round to 23.1 to one decimal

MTPS Maths Progression Grids - with Reasoning and Problem Solving

				number it could be? What do you notice? Round 296 to the nearest 10. Round it to the nearest 100. What do you notice? Can you suggest other numbers like this?	possible number it could be? What do you notice? Round 343997 to the nearest 1000. Round it to the nearest 10000. What do you notice? Can you suggest other numbers like this?	place. The total of the numbers is 46.2. What could the numbers be? What do you notice? Give an example of a six digit number which rounds to the same number when rounded to the nearest 10000 and 100000
	Addition and Subtraction: PROBLEM SOLVING					
Solves problems, including doubling, halving and sharing (ELG)		use place value and number facts to solve problems	solve number problems and practical problems involving these ideas.	solve number and practical problems that involve all of the above and with increasingly large positive numbers	solve number problems and practical problems that involve all of the above	solve number and practical problems that involve all of the above
	NUMBER BONDS					
EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	represent and use number bonds and related subtraction facts within 20	recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100				
	Continue the pattern $\begin{aligned} & 10+8=18 \\ & 11+7=18 \end{aligned}$ Can you make up a similar pattern for the number 17? How would this pattern look if it included subtraction?	Continue the pattern $\begin{aligned} & 90=100-10 \\ & 80=100-20 \end{aligned}$ Can you make up a similar pattern starting with the numbers 74,26 and 100 ? Missing numbers				

MTPS Maths Progression Grids - with Reasoning and Problem Solving

	Missing numbers $\begin{aligned} & 9+\square=10 \\ & 10-\square=9 \end{aligned}$ What number goes in the missing box?	$\begin{aligned} & 91+\square=100 \\ & 100-\square=89 \end{aligned}$ What number goes in the missing box?				
	MENTAL CALCULATION					
Adds and subtracts, using quantities and objects, 2 singledigit numbers, and counts on or back to find the answer (ELG)	add and subtract onedigit and two-digit numbers to 20, including zero	add and subtract numbers using concrete objects, pictorial representations, and mentally, including: * a two-digit number and ones * a two-digit number and tens * two two-digit numbers * adding three onedigit numbers	add and subtract numbers mentally, including: * a three-digit number and ones * a three-digit number and tens * a three-digit number and hundreds		add and subtract numbers mentally with increasingly large numbers	perform mental calculations, including with mixed operations and large numbers
	Working backwards Through practical games on number tracks and lines ask questions such as "where have you landed?" and "what numbers would you need to throw to land	True or false? Are these number sentences true or false? $73+40=113$ $98-18=70$ $46+77=123$ $92-67=35$ Give your reasons.	True or false? Are these number sentences true or false?597 + 7 = 614 $804-70=744$ $768+140=908$ Give your reasons.	True or false? Are these number sentences true or false?6.7 + $0.4=6.11$ $8.1-0.9=7.2$ Give your reasons.	True or false? Are these number sentences true or false? $6.17+0.4=6.57$ $8.12-0.9=8.3$ Give your reasons.	True or false? Are these number sentences true or false?6.32 + \square $=8$ \square $=1.68$ Give your reasons.

MTPS Maths Progression Grids - with Reasoning and Problem Solving

	on other given numbers?" What do you notice? $\begin{aligned} & 11-1=10 \\ & 11-10=1 \end{aligned}$ Can you make up some other number sentences like this involving 3 different numbers?	Hard and easy questions Which questions are easy / hard? $\begin{aligned} & 23+10= \\ & 93+10= \\ & 54+9= \\ & 54+1= \end{aligned}$ Explain why you think the hard questions are hard? Other possibilities $\square+\square+\square=14$ What single digit numbers could go in the boxes? How many different ways can you do this?	Hard and easy questions Which questions are easy / hard? $\begin{aligned} & 323+10= \\ & 393+10= \\ & 454-100= \\ & 954-120= \end{aligned}$ Explain why you think the hard questions are hard?	Hard and easy questions Which questions are easy / hard? $\begin{aligned} & 13323-70= \\ & 12893+300= \\ & 19354-500= \\ & 19954+100= \end{aligned}$ Explain why you think the hard questions are hard?	Hard and easy questions Which questions are easy / hard? $\begin{aligned} & 213323-70= \\ & 512893+300= \\ & 819354-500= \\ & 319954+100= \end{aligned}$ Explain why you think the hard questions are hard?	Hard and easy questions Which questions are easy / hard? $\begin{aligned} & 213323-70= \\ & 512893+37= \\ & 8193.54-5.9= \end{aligned}$ Explain why you think the hard questions are hard?
	read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs (appears also in Written Methods)	show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot				use their knowledge of the order of operations to carry out calculations involving the four operations

MTPS Maths Progression Grids - with Reasoning and Problem Solving

	Fact families Which four number sentences link these numbers? 12, 15, 3 What else do you know? If you know this: $12-9=3$ what other facts do you know? Missing symbols Write the missing symbols (+ - =) in these number sentences: 17 3	Fact families Which four number sentences link these numbers? $100,67,33$ What else do you know? If you know this: $87=100-13$ what other facts do you know? Missing symbols Write the missing symbols (+ - =) in these number sentences:				Missing symbols Write the missing signs $(+-x \div)$ in this number sentence: $12.3=9$ 11.9 What else do you know? If you know this: $86.7+13.3=100$ what other facts do you know?

MTPS Maths Progression Grids - with Reasoning and Problem Solving

	WRITTEN METHODS					
	read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs (appears also in Mental Calculation)		add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction	add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate	add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)	
	Convince me In my head I have two odd numbers with a difference of 2. What could they be? Convince me Missing numbers Fill in the missing numbers (using a range of practical resources to support) $\begin{aligned} & 12+\square=19 \\ & 20-\square=3 \end{aligned}$	Convince me What digits could go in the boxes? $\begin{aligned} & 7 \square-2 \square= \\ & 46 \end{aligned}$ Try to find all of the possible answers. How do you know you have got them all? Convince me	Convince me \square \square $+$ \square \square $+$ The total is 201 Each missing digit is either a 9 or a 1. Write in the missing digits. Is there only one way of doing this or lots of ways? Convince me	Convince me \square $-666=8$ What is the largest possible number that will go in the rectangular box? What is the smallest? Convince me	Convince me What numbers go in the boxes? What different answers are there? Convince me	Convince me Three four digit numbers total 12435. What could they be? Convince me

MTPS Maths Progression Grids - with Reasoning and Problem Solving

	INVERSE OPERATIONS, ESTIMATING AND CHECKING ANSWERS					
		recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.	estimate the answer to a calculation and use inverse operations to check answers	estimate and use inverse operations to check answers to a calculation	use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy	use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy.
	Making an estimate Pick (from a selection of number sentences) the ones where the answer is 8 or 9 . Is it true that? Is it true that $3+4=4$ +3 ?	Making an estimate Which of these number sentences have the answer that is between 50 and 60 $74-13 \quad 55+1787-$ 34 Always, sometimes, never Is it always, sometimes or never true that if you add three numbers less than 10 the answer will be an odd number	Making an estimate Which of these number sentences have the answer that is between 50 and 60 174-119 333-276 932-871 Always, sometimes, never Is it always, sometimes or never true that if you subtract a multiple of 10 from any number the units digit of that number stays the same. Is it always, sometimes or never true that when you add two numbers together you will get an even number	Making an estimate Which of these number sentences have the answer that is between 550 and 600 1174-611 3330-2779 9326-8777 Always, sometimes, never Is it always sometimes or never true that the difference between two odd numbers is odd.	Making an estimate Which of these number sentences have the answer that is between 0.5 and 0.6 11.74-11.18 33.3-32.71 Always, sometimes, never Is it always, sometimes or never true that the sum of four even numbers is divisible by 4.	Making an estimate Circle the number that is the best estimate to 932.6-931.05 $\begin{array}{llll}1.3 & 1.5 & 1.7 & 1.9\end{array}$ Always, sometimes, never Is it always, sometimes or never true that the sum of two consecutive triangular numbers is a square number

MTPS Maths Progression Grids - with Reasoning and Problem Solving

	PROBLEM SOLVING					
Solves problems, including doubling, halving and sharing (ELG)	solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=\square-9$	solve problems with addition and subtraction: * using concrete objects and pictorial representations, including those involving numbers, quantities and measures * applying their increasing knowledge of mental and written methods	solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction	solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why	solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why	solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
Solves practical problems that involve combining groups of 2,5 or 10, or sharing into equal groups (ELG Exc)		solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change (copied from Measurement)				Solve problems involving addition, subtraction, multiplication and division
	MULTIPLICATION \& DIVISION FACTS					
EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	count in multiples of twos, fives and tens (copied from Number and Place Value)	count in steps of 2, 3, and 5 from 0 , and in tens from any number, forward or backward	count from 0 in multiples of $4,8,50$ and 100 (copied from Number and Place Value)	count in multiples of 6, 7, 9, 25 and 1000 (copied from Number and Place Value)	count forwards or backwards in steps of powers of 10 for any given number up to	

MTPS Maths Progression Grids - with Reasoning and Problem Solving

MTPS Maths Progression Grids - with Reasoning and Problem Solving

	MENTAL CALCULATION				
		write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times onedigit numbers, using mental and progressing to formal written methods (appears also in Written Methods)	use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers	multiply and divide numbers mentally drawing upon known facts	perform mental calculations, including with mixed operations and large numbers
		Use a fact $20 \times 3=60 .$ Use this fact to work out $\begin{aligned} & 21 \times 3=22 \times 3= \\ & 23 \times 3=24 \times 3= \end{aligned}$	Use a fact $63 \div 9=7$ Use this fact to work out $126 \div 9=$ $252 \div 7=$	Use a fact $3 \times 75=225$ Use this fact to work out $450 \div 6=$ $225 \div 0.6=$ To multiply by 25 you multiply by 100 and	Use a fact $12 \times 1.1=13.2$ Use this fact to work out $15.4 \div 1.1=$ $27.5 \div 1.1=$

MTPS Maths Progression Grids - with Reasoning and Problem Solving

MTPS Maths Progression Grids - with Reasoning and Problem Solving

	sentences.				
	WRITTEN CALCULATION				
	calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs	write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times onedigit numbers, using mental and progressing to formal written methods (appears also in Mental Methods)	multiply two-digit and three-digit numbers by a one-digit number using formal written layout	multiply numbers up to 4 digits by a oneor two-digit number using a formal written method, including long multiplication for two-digit numbers	multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
				divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context	divide numbers up to 4-digits by a two-digit whole number using the formal written method of short division where appropriate for the context divide numbers up to 4 digits by a two-digit whole number using the formal written

MTPS Maths Progression Grids - with Reasoning and Problem Solving

MTPS Maths Progression Grids - with Reasoning and Problem Solving

MTPS Maths Progression Grids - with Reasoning and Problem Solving

					recognise and use square numbers and cube numbers, and the notation for squared (${ }^{2}$) and cubed (${ }^{3}$)	calculate, estimate and compare volume of cubes and cuboids using standard units, including centimetre cubed (cm^{3}) and cubic metres $\left(m^{3}\right)$, and extending to other units such as mm^{3} and km^{3} (copied from Measures)
	Spot the mistake Use a puppet to count but make some deliberate mistakes. e.g. 2456 10986 See if the pupils can spot the deliberate mistake and correct the puppet	True or false? When you count up in tens starting at 5 there will always be 5 units.	True or false? All the numbers in the two times table are even. There are no numbers in the three times table that are also in the two times table.	Always, sometimes, never? Is it always, sometimes or never true that an even number that is divisible by 3 is also divisible by 6 . Is it always, sometimes or never true that the sum of four even numbers is divisible by 4.	Always, sometimes, never? Is it always, sometimes or never true that multiplying a number always makes it bigger Is it always, sometimes or never true that prime numbers are odd. Is it always, sometimes or never true that when you multiply a whole number by 9 , the sum of its digits is also a multiple of 9 Is it always, sometimes or never true that a square	Always, sometimes, never? Is it always, sometimes or never true that dividing a whole number by a half makes the answer twice as big. Is it always, sometimes or never true that when you square an even number, the result is divisible by 4 Is it always, sometimes or never true that multiples of 7 are 1 more or 1 less than prime numbers.

MTPS Maths Progression Grids - with Reasoning and Problem Solving

MTPS Maths Progression Grids - with Reasoning and Problem Solving

		Use the inverse Use the inverse to check if the following calculations are correct: $\begin{aligned} & 12 \div 3=4 \\ & 3 \times 5=14 \end{aligned}$	Use the inverse Use the inverse to check if the following calculations are correct $\begin{aligned} & 23 \times 4=82 \\ & 117 \div 9=14 \end{aligned}$ Size of an answer Will the answer to the following calculations be greater or less than 80 $23 \times 3=$ $32 \times 3=$ $42 \times 3=$ $36 \times 2=$	Use the inverse Use the inverse to check if the following calculations are correct: $\begin{aligned} & 23 \times 4=92 \\ & 117 \div 9=14 \end{aligned}$ Size of an answer Will the answer to the following calculations be greater or less than 300 $152 \times 2=$ $78 \times 3=$ $87 \times 3=$ $4 \times 74=$	Use the inverse Use the inverse to check if the following calculations are correct: $\begin{aligned} & 4321 \times 12=51852 \\ & 507 \div 9=4563 \end{aligned}$ Size of an answer The product of a two digit and three digit number is approximately 6500. What could the numbers be?	Use the inverse Use the inverse to check if the following calculations are correct: $\begin{aligned} & 2346 \times 46=332796 \\ & 27.74 \div 19=1.46 \end{aligned}$ Size of an answer The product of a single digit number and a number with two decimal places is 21.34 What could the numbers be?
	PROBLEM SOLVING					
Solves practical problems that involve groups of 2,5 or 10 , or sharing into equal groups (ELG Exc)	solve one-step problems involving multiplication and division, by calculating the answer using concrete objects,	solve problems involving multiplication and division, using materials, arrays, repeated addition,	solve problems, including missing number problems, involving multiplication and division, including	solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one	solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes	solve problems involving addition, subtraction, multiplication and division

MTPS Maths Progression Grids - with Reasoning and Problem Solving

	pictorial representations and arrays with the support of the teacher	mental methods, and multiplication and division facts, including problems in contexts	positive integer scaling problems and correspondence problems in which n objects are connected to m objects	digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects	solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign	
					solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates	solve problems involving similar shapes where the scale factor is known or can be found (copied from Ratio and Proportion)
EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Fractions: COUNTING IN FRACTIONAL STEPS					
		Pupils should count in fractions up to 10 , starting from any number and using the $1 / 2$ and $2 / 4$ equivalence on the number line (Non Statutory Guidance)	count up and down in tenths	count up and down in hundredths		
		Spot the mistake $7,71 / 2,8,9,10$ $81 / 2,8,7,61 ⁄ 2$, ... and correct it What comes next? $5112,61 / 2,71 ⁄ 2, ~, \ldots ., \ldots .$	Spot the mistake six tenths, seven tenths, eight tenths, nine tenths, eleven tenths ... and correct it. What comes next?	Spot the mistake sixty tenths, seventy tenths, eighty tenths, ninety tenths, twenty tenths ... and correct it.	$\begin{aligned} & \hline \text { Spot the mistake } \\ & 0.088,0.089,1.0 \end{aligned}$	Spot the mistake Identify and explain mistakes when counting in more complex fractional steps

MTPS Maths Progression Grids - with Reasoning and Problem Solving

		9 112, 9, $8^{112}, \ldots \ldots . ., \ldots .$.	$\begin{aligned} & 6 / 10,7 / 10,8 / 10, \ldots . ., \\ & \ldots . . \\ & 12 / 10,11 / 10, \ldots . ., \ldots . ., \end{aligned}$	What comes next? 83/100, 82/100, 81/100,, \qquad 31/100, 41/100, 51/100,, ,	What comes next? 1.173, 1.183, 1.193	
	RECOGNISING FRACTIONS					
	recognise, find and name a half as one of two equal parts of an object, shape or quantity	recognise, find, name and write fractions ${ }^{1} / 3^{\prime}{ }^{1} / 4^{\prime}{ }^{2} / 4$ and ${ }^{3} / 4$ of a length, shape, set of objects or quantity	recognise, find and write fractions of a discrete set of objects: unit fractions and nonunit fractions with small denominators recognise that tenths arise from dividing an object into 10 equal parts and in dividing one - digit numbers or quantities by 10 .	recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten	recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents (appears also in Equivalence)	
	What do you notice? Choose a number of counters. Place them onto 2 plates so that there is the same number on each half. When can you do this and when can't you? What do you notice?	What do you notice? $1 / 4$ of $4=1$ $1 / 4$ of $8=2$ $1 / 4$ of $12=3$ Continue the pattern What do you notice?	What do you notice? $\begin{aligned} & 1 / 10 \text { of } 10=1 \\ & 2 / 10 \text { of } 10=2 \\ & 3 / 10 \text { of } 10=3 \end{aligned}$ Continue the pattern. What do you notice? What about $1 / 10$ of 20? Use this to work out $2 / 10$ of 20 , etc.	What do you notice? $1 / 10$ of $100=10$ $1 / 100$ of $100=1$ $2 / 10$ of $100=20$ $2 / 100$ of $100=2$ How can you use this to work out $6 / 10$ of 200 ? $6 / 100$ of 200 ?	What do you notice? One tenth of $£ 41$ One hundredth of $£ 41$ One thousandth of $£ 41$ Continue the pattern What do you notice? $\begin{aligned} & 0.085+0.015=0.1 \\ & 0.075+0.025=0.1 \\ & 0.065+0.035=0.1 \end{aligned}$ Continue the pattern for the next five number sentences.	What do you notice? One thousandth of my money is 31 p. How much do I have?

MTPS Maths Progression Grids - with Reasoning and Problem Solving

	recognise, find and name a quarter as one of four equal parts of an object, shape or quantity		recognise and use fractions as numbers: unit fractions and nonunit fractions with small denominators			
	True or false? Sharing 8 apples between 4 children means each child has 1 apple.	True or false? Half of $20 \mathrm{~cm}=5 \mathrm{~cm}$ $3 / 4$ of $12 \mathrm{~cm}=9 \mathrm{~cm}$	True or false? $2 / 10$ of $20 \mathrm{~cm}=2 \mathrm{~cm}$ $4 / 10$ of $40 \mathrm{~cm}=4 \mathrm{~cm}$ $3 / 5$ of $20 \mathrm{~cm}=12 \mathrm{~cm}$	True or false? $1 / 20$ of a metre $=20 \mathrm{~cm}$ $4 / 100$ of 2 metres $=40 \mathrm{~cm}$	True or false? 0.1 of a kilometre is 1 m . 0.2 of 2 kilometres is 2 m . 0.3 of 3 Kilometres is 3m 0.25 of 3 m is 500 cm . $2 / 5$ of $£ 2$ is 20 p	True or false? 25% of 23 km is longer than 0.2 of 20 km . Convince me.
	COMPARING FRACTIONS					
			compare and order unit fractions, and fractions with the same denominators		compare and order fractions whose denominators are all multiples of the same number	compare and order fractions, including fractions >1
			Give an example of a fraction that is less than a half. Now another example that no one else will think of. Explain how you know the fraction is less than a half. (draw an image) Ben put these fractions in order starting with the smallest. Are they in the	Give an example of a fraction that is more than a half but less than a whole. Now another example that no one else will think of.	Give an example of a fraction that is more than three quarters. Now another example that no one else will think of. Explain how you know the fraction is more than three quarters. Imran put these fractions in order starting with the	Give an example of a fraction that is greater than 1.1 and less than 1.5. Now another example that no one will think of. Explain how you know. Sam put these fractions in order starting with the

MTPS Maths Progression Grids - with Reasoning and Problem Solving

MTPS Maths Progression Grids - with Reasoning and Problem Solving

				value to each other. 0.90 .090 .990 .10 .01
	ROUNDING INCLUDING DECIMALS			
		round decimals with one decimal place to the nearest whole number	round decimals with two decimal places to the nearest whole number and to one decimal place	solve problems which require answers to be rounded to specified degrees of accuracy
		Do, then explain Circle each decimal which when rounded to the nearest whole number is 5 . $\begin{array}{llll}5.3 & 5.7 & 5.2 & 5.8\end{array}$ Explain your reasoning Top tips Explain how to round numbers to one decimal place? Also see rounding in place value	Do, then explain Circle each decimal which when rounded to one decimal place is 6.2. $\begin{array}{lll}6.32 & 6.23 & 6.27\end{array}$ 6.17 Explain your reasoning Top tips Explain how to round decimal numbers to one decimal place? Also see rounding in place value	Do, then explain Write the answer of each calculation rounded to the nearest whole number $\begin{aligned} & 75.7 \times 59 \\ & 7734 \div 60 \\ & 772.4 \times 9.7 \\ & 20.34 \times(7.9-5.4) \end{aligned}$ What's the same, what's different? ... when you round numbers to one decimal place and two decimal places? Also see rounding in place value

MTPS Maths Progression Grids - with Reasoning and Problem Solving

	EQUIVALENCE (INCLUDING FRACTIONS, DECIMALS AND PERCENTAGES)				
	write simple fractions e.g. $1 / 2$ of 6 $=3$ and recognise the equivalence of ${ }^{2} / 4$ and ${ }^{1} / 2$.	recognise and show, using diagrams, equivalent fractions with small denominators	recognise and show, using diagrams, families of common equivalent fractions	identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths	use common factors to simplify fractions; use common multiples to express fractions in the same denomination
	Odd one out. Which is the odd one out in this trio: $\begin{array}{lll}1 / 2 & 2 / 4 & 1 / 4\end{array}$ Why? What do you notice? Find $1 / 2$ of 8 . Find $2 / 4$ of 8 What do you notice?	Odd one out. Which is the odd one out in each of these trios $\begin{array}{lll} 1 / 2 & 3 / 6 & 5 / 8 \end{array}$ $\begin{array}{lll} 3 / 9 & 2 / 6 & 4 / 9 \end{array}$ Why? What do you notice? Find $2 / 5$ of 10 Find $4 / 10$ of 10 . What do you notice? Can you write any other similar statements?	Odd one out. Which is the odd one out in each of these trio $\begin{array}{lll}s^{3 / 4} & 9 / 12 & 4 / 6\end{array}$ $9 / 12 \quad 10 / 15 \quad 2 / 3$ Why? What do you notice? Find $4 / 6$ of 24 Find $2 / 3$ of 24 What do you notice? Can you write any other similar statements?	Odd one out. Which is the odd one out in each of these collections of 4 fractions $6 / 10 \quad 3 / 5 \quad 18 / 20 \quad 9 / 15$ 30/100 $\quad 3 / 10 \quad 6 / 20$ 3/9 Why? What do you notice? Find $30 / 100$ of 200 Find $3 / 10$ of 200 What do you notice? Can you write any other similar statements?	Odd one out. Which is the odd one out in each of these collections of 4 fraction $\begin{array}{lll}s^{3 / 4} & 9 / 12 & 26 / 36\end{array}$ 18/24 $\begin{array}{llll}4 / 20 & 1 / 5 & 6 / 25 & 6 / 30\end{array}$ Why? What do you notice? $8 / 5$ of $25=40$ $5 / 4$ of $16=20$ 7/6 of $36-42$ Can you write similar statements?
			recognise and write decimal equivalents of any number of tenths or hundredths	read and write decimal numbers as fractions $\text { (e.g. } 0.71={ }^{71} /{ }_{100} \text {) }$ recognise and use thousandths and relate them to tenths, hundredths and decimal	associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. ${ }^{3} /{ }_{8}$)

MTPS Maths Progression Grids - with Reasoning and Problem Solving

MTPS Maths Progression Grids - with Reasoning and Problem Solving

MTPS Maths Progression Grids - with Reasoning and Problem Solving

			$3 / 10+7 / 10=1$ Continue the pattern Can you make up a similar pattern for eighths? The answer is $5 / 10$, what is the question? (involving fractions / operations)	Continue the pattern Can you make up a similar pattern for addition? The answer is $3 / 5$, what is the question? What do you notice? $11 / 100+89 / 100=1$ $12 / 100+88 / 100=1$ $13 / 100+87 / 100=1$ Continue the pattern for the next five number sentences	$5 / 4$ and $1 / 4=6 / 4=11 / 2$ Continue the pattern up to the total of 2. Can you make up a similar pattern for subtraction? The answer is $12 / 5$, what is the question	and another, ... Another and another Write down 2 fractionswith a total of 3 4/5. ... and another, ... and another, ...
	MULTIPLICATION AND DIVISION OF FRACTIONS					
					multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams	multiply simple pairs of proper fractions, writing the answer in its simplest form (e.g. ${ }^{1} / 4 \times$ $1 / 2=1 / 8)$
						multiply one-digit numbers with up to two decimal places by whole numbers
						divide proper fractions by whole numbers (e.g. $1 / 3 \div 2=1 / 6)$

MTPS Maths Progression Grids - with Reasoning and Problem Solving

					Continue the pattern $1 / 4 \times 3=$ $1 / 4 \times 4=$ $1 / 4 \times 5=$ Continue the pattern for five more number sentences. How many steps will it take to get to 3 ? $5 / 3$ of $24=40$ Write a similar sentence where the answer is 56 . The answer is $21 / 4$, what is the question Give your top tips for multiplying fractions.	Continue the pattern $\begin{aligned} & 1 / 3 \div 2=1 / 6 \\ & 1 / 6 \div 2=1 / 12 \\ & 1 / 12 \div 2=1 / 24 \end{aligned}$ What do you notice? $1 / 2 \times 1 / 4=$ The answer is $1 / 8$, what is the question (involving fractions / operations) Give your top tips for dividing fractions.
	MULTIPLICATION AND DIVISION OF DECIMALS					
						multiply one-digit numbers with up to two decimal places by whole numbers
				find the effect of dividing a one- or two-digit number by 10 and 100 , identifying the value of the digits in the answer as ones, tenths and hundredths		multiply and divide numbers by 10,100 and 1000 where the answers are up to three decimal places
						each digit to three decimal places and

MTPS Maths Progression Grids - with Reasoning and Problem Solving

					multiply and divide numbers by 10,100 and 1000 where the answers are up to three decimal places
					associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. ${ }^{3} / 8$)
					use written division methods in cases where the answer has up to two decimal places
			Undoing I divide a number by 100 and the answer is 0.3 . What number did I start with? Another and another Write down a number with one decimal place which when multiplied by 10 gives an answer between 120 and 130. ... and another, ... and another, ...	Undoing I divide a number by 100 and the answer is 0.33 What number did I start with? Another and another Write down a number with two decimal places which when multiplied by 100 gives an answer between 33 and 38 and another, ... and another, ...	Undoing I multiply a number with three decimal places by a multiple of 10 . The answer is approximately 3.21 What was my number and what did I multiply buy? When I divide a number by 1000 the resulting number has the digit 6 in the units and tenths and the other digits are 3 and 2 in the tens and hundreds columns. What could my number have been?

MTPS Maths Progression Grids - with Reasoning and Problem Solving

	PROBLEM SOLVING						
Solves problems, including doubling, halving and sharing (ELG)			solve problems that involve all of the above	solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number		solve problems involving numbers up to three decimal places	
				solve sim money p fractions two deci	sure and involving imals to s.	solve problems which require knowing percentage and decimal equivalents of $1 / 2^{\prime}{ }^{1} / 4^{\prime}$ ${ }^{1} / 5_{5},{ }^{2} / 5_{5},{ }_{5}^{4}$ and those with a denominator of a multiple of 10 or 25 .	
EYFS	Year 1	Year 2	Ye		Year 4	Year 5	Year 6
	Algebra: EQUATIONS						
	solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=\square-9$ (copied from Addition and Subtraction)	recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems. (copied from Addition and Subtraction)	solve problem missing num problems, usin facts, place v more comple and subtraction from Addition Subtraction) solve problem missing num problems, inv multiplication division, inclu scaling (copied from	including number e, and ddition (copied nd including ing nd ng integer		use the properties of rectangles to deduce related facts and find missing lengths and angles (copied from Geometry: Properties of Shapes)	express missing number problems algebraically

MTPS Maths Progression Grids - with Reasoning and Problem Solving

MTPS Maths Progression Grids - with Reasoning and Problem Solving

MTPS Maths Progression Grids - with Reasoning and Problem Solving

MTPS Maths Progression Grids - with Reasoning and Problem Solving

			Undoing I think of a number and then reduce it by 15%. The number I end up with is 306 . What was my original number? In a sale where everything is reduced by 15% I paid the following prices for three items. $£ 255, £ 850, £ 4.25$ What was the original selling price?		
			solve problems involving similar shapes where the scale factor is known or can be found		
			Unpicking A recipe needs to include three times as much apple than peach. The total weight of apples and peaches in a recipe is 700 grammes. How much apple do I need?		
			solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.		
			Other possibilities A 50 seater coach travels to the match. Most of the seats are taken. Junior tickets cost $£ 13$ and Adult tickets cost $£ 23$. The only people on the coach are Juniors and Adults. The total amount paid for tickets is approximately $£ 900$ How many people on the coach were adults and how many were juniors?		
EYFS	Year 1	Year 2	Year 3 Year 4	Year 5	Year 6
Geometry - Properties of Shape: IDENTIFYING SHAPES AND THIER PROPERTIES					
Explores characteristics of everyday objects and shapes and uses mathematical language to describe them (ELG)	recognise and name common 2-D and 3-D shapes, including: * 2-D shapes [e.g. rectangles (including squares), circles and triangles]	identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line identify and describe	identify lines of symmetry in 2-D shapes presented in different orientations	identify 3-D shapes, including cubes and other cuboids, from 2D representations	recognise, describe and build simple 3-D shapes, including making nets (appears also in Drawing and Constructing) illustrate and name

MTPS Maths Progression Grids - with Reasoning and Problem Solving

Talks about properties, (ELG Exc)	* 3-D shapes [e.g. cuboids (including cubes), pyramids and spheres].	the properties of 3-D shapes, including the number of edges, vertices and faces identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid]				parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius
What's the same, what's different? Can you find an (object) that is the same shape as this one? How are they the same/different?	What's the same, what's different? Find a rectangle and a triangle in this set of shapes. Tell me one thing that's the same about them. Tell me one thing that is different about them. Visualising Put some shapes in a bag. Find me a shape that has more than three edges.	What's the same, what's different? Pick up and look at these 3D shapes. Do they all have straight edges and flat faces? What is the same and what is different about these shapes? Visualising In your head picture a rectangle that is twice as long as it is wide. What could its measurements be?	What's the same, what's different? What is the same and different about these three2-D shapes? \square Visualising I am thinking of a 3dimensional shape which has faces that are triangles and squares. What could my shape be?	What's the same, what's different? What is the same and what is different about the diagonals of these 2-D shapes? Visualising Imagine a square cut along the diagonal to make two triangles. Describe the triangles. Join the triangles on different sides to make new shapes.	What's the same, what's different? What is the same and what is different about the net of a cube and the net of a cuboid? Visualising I look at a large cube which is made up of smaller cubes. If the larger cube is	What's the same, what's different? What is the same and what is different about the nets of a triangular prism and a square based pyramid? Visualising Jess has 24 cubes which she builds to make a cuboid. Write the dimensions of cuboids that she could make.

MTPS Maths Progression Grids - with Reasoning and Problem Solving

MTPS Maths Progression Grids - with Reasoning and Problem Solving

	COMPARING AND CLASSIFYING					
		compare and sort common 2-D and 3-D shapes and everyday objects		compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes	use the properties of rectangles to deduce related facts and find missing lengths and angles distinguish between regular and irregular polygons based on reasoning about equal sides and angles	compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons
	True or false? All 2-D shapes have at least 4 sides Other possibilities Can you find shapes that can go with the set with this label? "Have straight sides"	Always, sometimes, never Is it always, sometimes or nerver true that when you fold a square in half you get a rectangle. Other possibilities Can you find shapes that can go with the set with this label? "Have straight sides and all sides are the same length"	Always, sometimes, never Is it always, sometimes or never that all sides of a hexagon are the same length. Other possibilities Can you find shapes that can go with the set with this label? "Have straight sides that are different lengths."	Always, sometimes, never Is it always, sometimes or never true that the two diagonals of a rectangle meet at right angles. Other possibilities Can you show or draw a polygon that fits both of these criteria? What do you look for? " Has exactly two equal sides." " Has exactly two parallel sides."	Always, sometimes, never Is it always, sometimes or never true that the number of lines of reflective symmetry in a regular polygon is equal to the number of its sides n . Other possibilities A rectangular field has a perimeter between 14 and 20 metres. What could its dimensions be?	Always, sometimes, never Is it always, sometimes or never true that, in a polyhedron, the number of vertices plus the number of faces equals the number of edges. Other possibilities Not to scale The angle at the top of this isosceles triangle is 110 degrees. What are the other angles in the triangle?

MTPS Maths Progression Grids - with Reasoning and Problem Solving

	ANGLES				
		recognise angles as a property of shape or a description of a turn		know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles	
		identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle	identify acute and obtuse angles and compare and order angles up to two right angles by size	identify: * angles at a point and one whole turn (total 360°) * angles at a point on a straight line and $1 / 2$ a turn (total 180°) * other multiples of 90°	recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles
		identify horizontal and vertical lines and pairs of perpendicular and parallel lines			
		Convince me Which capital letters have perpendicular and / or parallel lines? Convince me.	Convince me Ayub says that he can draw a right angled triangle which has another angle which is obtuse. Is he right? Explain why.	Convince me What is the angle between the hands of a clock at four o clock? At what other times is the angle between the hands the same? Convince me	Convince me One angle at the point where the diagonals of a rectangle meet is 36 degrees. What could the other angles be? Convince me

MTPS Maths Progression Grids - with Reasoning and Problem Solving

EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Geometry: POSITION, DIRECTION AND MOVEMENT					
Talks about position (ELG Exc)	describe position, direction and movement, including half, quarter and three-quarter turns.	use mathematical vocabulary to describe position, direction and movement including		describe positions on a 2-D grid as coordinates in the first quadrant	identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed	describe positions on the full coordinate grid (all four quadrants)
		line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anti-clockwise)		describe movements between positions as translations of a given unit to the left/right and up/down		draw and translate simple shapes on the coordinate plane, and reflect them in the axes.
				plot specified points and draw sides to complete a given polygon		
	Working backwards The shape below was turned three quarter of a full turn and ended up looking like this. What did it look like when it started? (practical)	Working backwards If I face forwards and turn three quarter turns clockwise then a quarter turn anticlockwise describe my finishing position.	Working backwards If I make the two opposite sides of a square 5 cm longer the new lengths of those sides are 27 cm . What was the size of my original square? What is the name and size of my new shape?	Working backwards Here are the coordinates of corners of a rectangle which has width of 5 . $(7,3)$ and $(27,3)$ What are the other two co-ordinates?	Working backwards A square is translated 3 squares down and one square to the right. Three of the coordinates of the translated square are: $(3,6) \quad(8,11) \quad(8,6)$ What are the coordinates of the original square?	Working backwards Two triangles have the following coordinates: Triangle A: $(3,5) \quad(7,5) \quad(4,7)$ Triangle B: $(3,1)(7,1) \quad(4,3)$ Describe the translation of triangle A to B and then from B to A.

MTPS Maths Progression Grids - with Reasoning and Problem Solving

PATTERN								
Recognises, creates and describes patterns (ELG)		order and arrange combinations of mathematical objects in patterns and sequences						
		What comes next? Explain why						
EYFS	Year 1		Year 2		Year 3	Year 4	Year 5	Year 6
Measurement: COMPARING AND ESTIMATING								
Uses everyday language to talk about size, weight, capacity, position, distance, time and money to compare quantities and objects and to solve problems (ELG)						estimate, compare and calculate different measures, including money in pounds and pence (also included in Measuring)	calculate and compare the area of squares and rectangles including using standard units, square centimetres (cm^{2}) and square metres (m^{2}) and estimate the area of irregular shapes (also included in measuring)	calculate, estimate and compare volume of cubes and cuboids using standard units, including centimetre cubed (cm^{3}) and cubic metres (m^{3}), and extending to other units such as mm^{3} and km^{3}.
Talks about time (ELG Exc)					estimate volume (e.g. using 1 cm blocks to build cubes and cuboids) and capacity (e.g. using water)			

MTPS Maths Progression Grids - with Reasoning and Problem Solving

Top tips Which (object) is heavier / longer / taller than this one? Can you show me?	Top tips How do you know that this (object) is heavier / longer / taller than this one? Explain how you know.	Top tips Put these measurements in order starting with the smallest. 75 grammes 85 grammes 100 grammes Explain your thinking Position the symbols Place the correct symbol between the measurements >or < 36 cm 63 cm 130 ml \square 103 ml Explain your thinking	Top Tips Put these measurements in order starting with the largest. Half a litre Quarter of a litre 300 ml Explain your thinking Position the symbols Place the correct symbol between the measurements >or < 306 cm \square Half a metre 930 ml \square 1 litre Explain your thinking	Top Tips Put these amounts in order starting with the largest. Half of three litres Quarter of two litres 300 ml Explain your thinking Position the symbols Place the correct symbols between the measurements > or < £23.61 2326p 2623p Explain your thinking	Top Tips Put these amounts in order starting with the largest. $130000 \mathrm{~cm}^{2}$ $1.2 \mathrm{~m}^{2}$ $13 \mathrm{~m}^{2}$ Explain your thinking	Top Tips Put these amounts in order starting with the largest. $100 \mathrm{~cm}^{3}$ $1000000 \mathrm{~mm}^{3}$ $1 \mathrm{~m}^{3}$ Explain your thinking
	sequence events in chronological order using language [e.g. before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening]	compare and sequence intervals of time	compare durations of events, for example to calculate the time taken by particular events or tasks			
			estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms			

MTPS Maths Progression Grids - with Reasoning and Problem Solving

			of seconds, minutes, hours and o'clock; use vocabulary such as a.m./p.m., morning, afternoon, noon and midnight (appears also in Telling the Time)			
	Explain thinking Ask pupils to reason and make statements about to the order of daily routines in school e.g. daily timetable e.g. we go to PE after we go to lunch. Is this true or false? What do we do before break time? etc.	Undoing The film finishes two hours after it starts. It finishes at 4.30. What time did it start? Draw the clock at the start and the finish of the film. Explain thinking The time is $3: 15 \mathrm{pm}$. Kate says that in two hours she will be at her football game which starts at 4:15. Is Kate right? Explain why.	Undoing A programme lasting 45 minutes finishes at 5.20. At what time did it start? Draw the clock at the start and finish time. Explain thinking Salha says that 100 minutes is the same as 1 hour. Is Salha right? Explain why.	Undoing Imran's swimming lesson lasts 50 mins and it takes 15 mins to change and get ready for the lesson. What time does Imran need to arrive if his lesson finishes at 6.15 pm ? Explain thinking The time is 10:35 am. Jack says that the time is closer to 11:00am than to 10:00am. Is Jack right? Explain why.	Undoing A school play ends at 6.45 pm . The play lasted 2 hours and 35 minutes. What time did it start? Other possibilities (links with geometry, shape and space) A cuboid is made up of 36 smaller cube \square If the cuboid has the length of two of its sides the same what could the dimensions be? Convince me	Undoing A film lasting 200 minutes finished at $17: 45$. At what time did it start? Other possibilities (links with geometry, shape and space) A cuboid has a volume between 200 and 250 cm cubed. Each edge is at least 4 cm long. List four possibilities for the dimensions of the cuboid.
	MEASURING and CALCULATING					
	measure and begin to record the following: * lengths and heights * mass/weight	choose and use appropriate standard units to estimate and measure length/height	measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg/g);	estimate, compare and calculate different measures, including money in pounds and	use all four operations to solve problems involving measure (e.g. length, mass,	solve problems involving the calculation and conversion of units of

MTPS Maths Progression Grids - with Reasoning and Problem Solving

	* capacity and volume * time (hours, minutes, seconds)	in any direction (m / cm); mass (kg / g); temperature (${ }^{\circ} \mathrm{C}$); capacity (litres/ml) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels	volume/capacity (1/ml)	pence (appears also in Comparing)	volume, money) using decimal notation including scaling.	measure, using decimal notation up to three decimal places where appropriate (appears also in Converting)
	Application (Can be practical) Which two pieces of string are the same length as this book?	Application (Practical) Draw two lines whose lengths differ by 4 cm .	Write more statements (You may choose to consider this practically) If there are 630 ml of water in a jug. How much water do you need to add to end up with a litre of water? What if there was 450 ml to start with? Make up some more questions like this	Write more statements One battery weighs the same as 60 paperclips; One pencil sharpener weighs the same as 20 paperclips. Write down some more things you know. How many pencil sharpeners weigh the same as a battery?	Write more statements Mr Smith needs to fill buckets of water. A large bucket holds 6 litres and a small bucket holds 4 litres. If a jug holds 250 ml and a bottle holds 500 ml suggest some ways of using the jug and bottle to fill the buckets.	Write more statements Chen, Megan and Sam have parcels. Megan's parcel weighs 1.2 kg and Chen's parcel is 1500 g and Sam's parcel is half the weight of Megan's parcel. Write down some other statements about the parcels. How much heavier is Megan's parcel than Chen's parcel?
			measure the perimeter of simple 2-D shapes	measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres	measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres	recognise that shapes with the same areas can have different perimeters and vice versa
			Testing conditions A square has sides of a whole number of	Testing conditions If the width of a rectangle is 3 metres	Testing conditions Shape A is a rectangle that is 4 m long and	Testing conditions A square has the perimeter of 12 cm .

MTPS Maths Progression Grids - with Reasoning and Problem Solving

MTPS Maths Progression Grids - with Reasoning and Problem Solving

	Possibilities Ella has two silver coins. How much money might she have?	Possibilities How many different ways can you make 63 p using only 20 p, $10 p$ and $1 p$ coins?	Possibilities I bought a book which cost between $£ 9$ and £10 and I paid with a ten pound note. My change was between 50 p and $£ 1$ and was all in silver coins. What price could I have paid?	Possibilities Adult tickets cost $£ 8$ and Children's tickets cost $£ 4$. How many adult and children's tickets could I buy for £100 exactly? Can you find more than one way of doing this?		

MTPS Maths Progression Grids - with Reasoning and Problem Solving

			See also Geometry Properties of Shape	See also Geometry Properties of Shape	See also Geometry Properties of Shape
TELLING THE TIME					
tell the time to the hour and half past the hour and draw the hands on a clock face to show these times.	tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times.	tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12-hour and 24-hour clocks	read, write and convert time between analogue and digital 12 and 24 -hour clocks (appears also in Converting)		
recognise and use language relating to dates, including days of the week, weeks, months and years	know the number of minutes in an hour and the number of hours in a day. (appears also in Converting)	estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes, hours and o'clock; use vocabulary such as a.m./p.m., morning, afternoon, noon and midnight (appears also in Comparing and Estimating)			
			solve problems involving converting from hours to	solve problems involving converting between units	

MTPS Maths Progression Grids - with Reasoning and Problem Solving

			minutes; minutes to seconds; years to months; weeks to days (appears also in Converting)	of time	
	Working backwards Draw hands on the clock faces to show when break started and when it finished 15 minutes later at 10:35.	Working backwards Tom's bus journeytakes half an hour. He arrives at his destination at 9:25. At what time did his bus leave? $\text { 9:05 } 8: 55 \quad 8: 45$	Working backwards Put these times of the day in order, starting with the earliest time. A: Quarter to four in the afternoon B: 07:56 C: six minutes to nine in the evening D: 14:36	Working backwards Put these lengths of time in order starting with the longest time. 105 minutes 1 hour 51 minutes 6360 seconds	
CONVERTING					
	know the number of minutes in an hour and the number of hours in a day. (appears also in Telling the Time)	know the number of seconds in a minute and the number of days in each month, year and leap year	convert between different units of measure (e.g. kilometre to metre; hour to minute)	convert between different units of metric measure (e.g. kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre)	use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places
			read, write and convert time between analogue and digital 12 and 24 -hour clocks (appears also in Converting)	solve problems involving converting between units of time	solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate (appears also in Measuring and Calculating)

MTPS Maths Progression Grids - with Reasoning and Problem Solving

MTPS Maths Progression Grids - with Reasoning and Problem Solving

		questions by counting the number of objects in each category and sorting the categories by quantity				
		ask and answer questions about totalling and comparing categorical data				
		True or false? (Looking at a simple pictogram) "More people travel to work in a car than on a bicycle". Is this true or false? Convince me. Make up you own 'true/false' statement about the pictogram What's the same, what's different? Pupils identify similarities and differences between different representations and	True or false? (Looking at a bar chart) "Twice as many people like strawberry than lime". Is this true or false? Convince me. Make up your own 'true/false' statement about the bar chart. What's the same, what's different? Pupils identify similarities and differences between different representations and explain them to each other	True or false? (Looking at a graph showing how the class sunflower is growing over time) "Our sunflower grew the fastest in July". Is this true or false? Convince me. Make up your own 'true/false' statement about the graph. What's the same, what's different? Pupils identify similarities and differences between different	True or false? (Looking at a train time table) "If I want to get to Exeter by 4 o'clock this afternoon, I will need to get to Taunton station before midday". Is this true or false? Convince me. Aake up your own 'true/false' statement about a journey using the timetable. What's the same, what's different? Pupils identify similarities and differences between different representations and	True or false? (Looking at a pie chart) "More than twice the number of people say their favourite type of T.V. programme is soaps than any other" Is this true or false? Convince me. Make up your own 'true/false' statement about the pie chart. What's the same, what's different? Pupils identify similarities and differences between different representations and explain them to each

MTPS Maths Progression Grids - with Reasoning and Problem Solving

	explain them to each other		representations and explain them to each other	explain them to each other	other
	SOLVING PROBLEMS				
		solve one-step and two-step questions [e.g. 'How many more?' and 'How many fewer?'] using information presented in scaled bar charts and pictograms and tables.	solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs.	solve comparison, sum and difference problems using information presented in a line graph	calculate and interpret the mean as an average
	Create a questions Pupils ask (and answer) questions about different statistical representations using key vocabulary relevant to the objectives.	Create a questions Pupils ask (and answer) questions about different statistical representations using key vocabulary relevant to the objectives. (see above)	Create a questions Pupils ask (and answer) questions about different statistical representations using key vocabulary relevant to the objectives. (see above)	Create a questions Pupils ask (and answer) questions about different statistical representations using key vocabulary relevant to the objectives. (see above)	Create a questions Make up a set of five numbers with a mean of 2.7 Missing information The mean score in six test papers in a spelling test of 20 questions is 15.Five of the scores were 1312171816 What was the missing score?

